
Pattern-Direct and Layout-Aware Replication Scheme for Parallel I/O Systems

Yanlong Yin∗, Jibing Li∗, Jun He∗, Xian-He Sun∗, and Rajeev Thakur†
∗Computer Science Department

Illinois Institute of Technology, Chicago, Illinois 60616
Email: {yyin2, jli33, jhe24, sun}@iit.edu

†Mathematics and Computer Science Division
Argonne National Laboratory, Argonne, Illinois 60439

Email: thakur@mcs.anl.gov

Abstract—The performance gap between computing power
and the I/O system is ever increasing, and in the meantime
more and more High Performance Computing (HPC) ap-
plications are becoming data intensive. This study describes
an I/O data replication scheme, named Pattern-Direct and
Layout-Aware (PDLA) data replication scheme, to alleviate
this performance gap. The basic idea of PDLA is replicating
identified data access pattern, and saving these reorganized
replications with optimized data layouts based on access cost
analysis. A runtime system is designed and developed to
integrate the PDLA replication scheme and existing parallel
I/O system; a prototype of PDLA is implemented under the
MPICH2 and PVFS2 environments. Experimental results show
that PDLA is effective in improving data access performance
of parallel I/O systems.

Keywords-Parallel I/O; I/O optimization; data replication;
data reorganization; data access pattern

I. INTRODUCTION

During the last several decades, the rapid development
of semiconductor technology allowed the processor speed
to increase exponentially. Supercomputers are moving from
petascale towards exascale in the coming decade. However,
the developments of the data input/output (I/O) system
and storage devices do not keep pace with that of the
computing power. As believed by many, the trend of the
biased technology advance will continue in the near future.
This unbalanced technology advance leads to the so-called
I/O-wall problem.

In the meantime, large-scale scientific applications grow
continuously in terms of data access intensity, imposing
greater workload on the I/O and storage subsystems. This
trend of applications puts even more pressure on already
saturated I/O systems. For instance, in astronomy, giant radio
telescopes capture observation images continuously, and
then the captured data are saved into storage systems. The
data analysis applications, such as Montage [1] developed
by NASA, then read the data out of storage systems and
analyze them. The telescopes may generate data at a rate of
many gigabytes to even petabytes per second and the data
analysis is both computational intensive and data intensive
[2].

Relatively slow storage devices compounded with data
intensive applications make I/O system the primary perfor-
mance bottleneck in many HPC systems. This drawback mo-
tivates this study, which aims to alleviate the I/O bottleneck,
especially for data intensive applications.

I/O is a hot issue in recent years. Many I/O optimization
techniques have been developed, such as data sieving [3],
List I/O [4], DataType I/O [5], and Collective I/O [3] [6].
Some systems may also integrate new layers/middleware
into the parallel I/O software stack. All these layers and
optimization techniques make the parallel I/O system ex-
ceedingly complex. How to optimize I/O performance is
elusive, and the optimization is a complex, error-prone,
and time-consuming task, especially for applications with
complex I/O behaviors. For example, Zhang’s work [7]
shows that Collective I/O works well in some cases but not
in others. Song’s work [8] shows that finding the optimal
data layout configuration in PVFS2 can be a daunting task.
Their works further confirm our belief that I/O performance
is application dependent, and a general I/O system need
to be adjustable to different applications [9]. This raised a
must have property of our solution: the I/O optimization
should bring the application and system’s characteristics
into consideration and be adaptive for different applications.

To achieve the goal of alleviating I/O bottleneck and to
satisfy the requirement of the I/O optimization’s adaptability,
we design and implement the Pattern-Direct and Layout-
Aware (PDLA) replication scheme for parallel I/O systems.
We design PDLA based on the following facts.

1) Contiguous data access is preferable.
The performance of contiguous data access is higher than

that of noncontiguous data access. This stays true for both
hard disk drives (HDD) and solid state disks (SSD) [10].

2) Data layout matters.
Data layout in parallel file systems can largely influence

the I/O performance. Modern parallel file systems support
multiple data layout policies. Users can choose to distribute
some data on one single storage node, on a set of nodes, or
on all available nodes. The previous work [8] shows that, for
applications with different data access patterns, the optimal
data layouts are different. The optimal data layout yields the



lowest data access cost, hence the optimal I/O performance.
3) It is valuable and feasible to make use of application’s

characteristic information for I/O optimizations.
In HPC area, data intensive applications have a large

amount of data reads or writes, and they read or write in
certain ways. In other words, their I/O behaviors exhibit
patterns. For example, due to the iterative loop structures of
program codes, some individual or group of data accesses
may repeat for many times in one execution [11]. It is
feasible to collect and utilize this information, as we did
in our previous work [9] [10] [12]. Nevertheless, among
different runs, the same patterns can be identified under the
same execution environment and configuration.

We shaped the design of PDLA based on the above three
facts. 1) PDLA transforms noncontiguous data accesses into
contiguous ones. 2) It takes advantage of the application’s
data access pattern to rearrange data. 3) It distributes repli-
cation data with awareness of the physical data layout in
parallel file systems.

The PDLA replication scheme includes two major opti-
mizations. In the “Pattern-Direct” (PD) replication scheme,
the system makes a reorganized data replication for each
identified data access patterns of the application. As a
result, the logical data in the replication are organized
in order with how they are accessed. After determining
the reorganization, in the “Layout-Aware” (LA) replication
placement, the system stores the generated replications in
their optimal data layouts in parallel file systems, based on
the results of quantitative analysis on data access cost. Once
the replications are ready, the I/O system is able to serve
future data accesses with the replications.

This study makes the following contributions. (1) We
design a Pattern-Direct data replication scheme to reorganize
data according to access patterns. (2) To make the storage of
replication files layout-aware, we construct a data access cost
model for parallel I/O systems to identify the optimal data
layout for each replication. (3) To integrate PDLA scheme
into existing parallel I/O systems, we design a runtime
system that discovers access patterns, creates the replica-
tions, and redirects application’s requests. We implement
a prototype of this runtime system within MPICH2 [13]
and PVFS2 [14]. Experimental results show that the PDLA
replication scheme is effective in exploiting the full potential
of parallel I/O systems.

The rest of this paper is organized as follows. Section
II and III describe the key designs of the Pattern-Direct
replication scheme and Layout-Aware replication placement
respectively. Section IV describes the runtime system design
and its implementation. Section V presents the evaluation
results. Section VI discusses some issues related to write
optimization and presents some related experimental results.
Section VII reviews the related work in data replication and
data organization. Section VIII concludes this paper.

II. PATTERN-DIRECT REPLICATION SCHEME

The success of the Pattern-Direct replication scheme relies
on solving two technical issues: obtaining data access pattern
information and optimizing data replications using pattern
information.

A. Data access patterns

We describe a data access pattern from five key aspects: 1)
spatial locality, 2) size of accesses, 3) temporal information,
4) iterative behavior, and 5) I/O operations. The spatial
locality can be contiguous, noncontiguous, and the combi-
nations of contiguous and noncontiguous patterns. The non-
contiguous patterns are further divided based on byte order
distance between successive accesses. Some applications
access data just once, whereas some access the same data
in the same order multiple times. This can be described
with repetitive behavior, which occurs often in iterative loop
codes. Request size is crucial and plays a significant role
in striping factor, stripe size, and the number of requests.
We classify temporal behavior based on intervals between
accesses, which can be fixed or random. I/O operations are
divided into read only, write only, and read and write.

The procedure of obtaining access patterns includes two
steps. The first step is to trace the I/O operations of the
underlying application during its execution into trace files.
The second step is to perform the offline analysis on trace
files and obtain the results, namely, data access patterns. The
related implementation details are described in Section IV.

We define two types of data access patterns, local and
global ones. A local data access pattern represents the infor-
mation of a single process’s access patterns. By co-analyzing
the local I/O access patterns of the underlying application,
we are able to acquire some global data access patterns
that represent the I/O behavior of the entire application. For
example, when an application conducts a series of collective
I/O operations in which all the processes participate, the
operations are recorded in every single process’s trace file.
In the global view, these operations are no longer separated
behaviors of each process; instead, they are collectively
providing the global behaviors of the application. In many
situations, local patterns cannot provide the true story of the
application, and a global view is necessary to optimize I/O
performance.

For more details about the definition and representation of
access patterns, please refer to our previous work [9] [12].

B. Pattern-Direct replication policy

1) Replication creation policy: Each replication contains
“a data object” instead of an entire original file in the file
system. More specifically, it contains the data accessed in
one data access patterns. Also, data in a replication are
reorganized in the access order according to a corresponding
access pattern. Each replication is stored as a new file in the
same file system.



One data file 

Two access  

patterns 

Replication 1 Replication 2 

Access pattern 

Reorganization according to access pattern 

Figure 1. Two access patterns on one data file. PDLA replication scheme
creates one replication for each access pattern.

As shown in Figure 1, Pattern-Direct replication scheme
only replicates the accessed data. The data that are not
accessed or do not fall into any data access pattern, will
not be replicated, and only exist in the original data file.
The Pattern-Direct replication scheme, comparing with the
trivial data replication, yields more efficient uses of storage
space.

In PDLA replication scheme, we set the number of repli-
cations to be one. The parameter “number of replications”
plays a pivotal role in modern distributed file systems. For
example, in HDFS [15], this parameter is 3 by default
for high data availability and flexible data locality. PDLA’s
one-replication policy relies on several considerations. First,
keeping one replication for each data object, is as good as
keeping n(n > 1) replications in terms of I/O performance.
Because, in the HPC area, it is rare that multiple processes
read the same data at the same time. Even when that
happens, the application usually adopts collective I/O, which
means only few processes read the required data from
storage, and then exchange data among all relative processes
on the client side. Second, the one-replication policy is more
efficient in terms of storage space consumption. Third, this
policy makes it simple to maintain the data consistency
between the replications and the original data.

As mentioned in Section II-A, the system may obtain
various data access patterns for a given application, includ-
ing both local and global patterns. The system first makes
replications for all the global data access patterns, and then
makes replications for those local patterns that do not belong
to any global pattern. In this way, we reduce the number
of data replications and retain the flexibility of data layout
optimization. As illustrated in Figure 2, local patterns 0
and 1 are combined, thus their data are in the same file
– Replication 0. Local patterns 2 and 3 are also combined.
Local pattern 4 does not belong to any global pattern, and
its related data form an independent replication.

2) When to create replications: By default, the scheme
creates the replications offline, which means the creation
does not occur simultaneously with the application running
and accessing the original data. During the first execution
of the application, data access patterns are identified and
added into the I/O system’s pattern database. After that, the

Replication 0 Replication 1 Replication 2 

Local pattern 1 

Local pattern 0 Local pattern 2 

Local pattern 3 

Local pattern 4 

Figure 2. Local patterns are combined into global patterns.

system starts to make replications based on the queue of
newly added patterns. This procedure may work only when
there are unused computing resources and I/O bandwidth,
to make replications without affliction to the execution of
normal tasks. In our future work, the system may allow
users to submit pattern items to the queue by manipulating
the pattern database, in case that the future runs of the
application will be accessing other data with the same
patterns.

3) Where to store replications: Replication files lie on
the same parallel file system used by the supercomputer
where the applications run. PDLA replication scheme works
automatically and hides all the details; replication files are
only visible to the I/O middleware that redirects the requests
from original files to replications. All the replications are
placed in some specially named directories, and any naming
rule would work as long as the system’s metadata keeps
the replications’ file paths. Placing these replication files in
separated directories also brings convenience for the Layout-
Aware replication placement, because modern parallel file
systems allow users to control the data layout by setting the
attributes of the directories.

Admittedly, the pattern-direct data replication strategy
consumes some amount of storage space, like almost all
other replication schemes. This is a trade-off between data
access performance and storage capacity. But, for many
applications this is a good trade-off from energy saving
point-of-view. Reducing data access time will reduce energy
consumption. In addition, since replications are the small
portion active data of the original data, the original data then
could be stored on slow spin disks or even on tapes. For this
kind of applications, the trade-off of space becomes blurry
and the gains in I/O performance and energy consumption
become obvious. We will not explore energy saving in this
study, but focus on I/O optimization.

III. LAYOUT-AWARE REPLICATION PLACEMENT

A. Data layout in parallel file systems

We category three most popularly adopted data lay-
out methods as: one-dimensional horizontal (1-DH), one-
dimensional vertical (1-DV), and two-dimensional (2-D)
data layouts. As shown in Figure 3, 1-DH data layout is
the simple striping method where each process distributes
its data across all available storage nodes. 1-DV data layout
refers to the policy that data to be accessed by each I/O client



Data file used by process 0 (P0) Data file used by process 1 (P1) 

Data file used by process 2 (P2) Data file used by process 3 (P3) 

Storage 

Node 0 

Storage 

Node 1 

Storage 

Node 2 

Storage 

Node 3 

Storage 

Node 0 

Storage 

Node 1 

Storage 

Node 2 

Storage 

Node 3 

Storage 

Node 0 

Storage 

Node 1 

Storage 

Node 2 

Storage 

Node 3 

Client node 0 

P0 P1 

Client node 1 

P2 P3 

1-DH Data layout 1-DV Data layout 2-D Data layout 

Client node 0 

P0 P1 

Client node 1 

P2 P3 

Client node 0 

P0 P1 

Client node 1 

P2 P3 

Figure 3. Three data layouts in parallel file systems.

process are stored on one storage node. 2-D data layout
refers to the policy in which data to be accessed by each
process are stored on a subset (storage group) of storage
nodes.

Among these three layout policies, 1-DH data layout is
the most widely used one, as it can provide acceptable I/O
performance for many situations. In PVFS2, it is the default
data layout method namely “simple striping.” However, in
some cases, it yields poor performance. For example, when
the number of processes is much larger than the number of
storage nodes, each storage node has to serve requests from
all processes, and these requests compete for shared disks.
As a result, the disks work in an interleaving way and each
request can finish only when all the sub-requests on all nodes
finish [16]. Consequentially, each request suffers a large la-
tency hence a high access cost. In fact, for this example case,
1-DV data layout yields higher I/O performance than 1-DH
does. This example shows that the number of storage nodes
is not the only parameter affecting I/O performance. The
number of processes, the request size, and other parameters
also play critical roles. Therefore, finding the optimal data
layout configuration in PVFS2 can be a daunting task.

Replications created by Pattern-Direct replication scheme
are logical files before getting stored. While storing them
into parallel file systems, the Layout-Aware data storage
optimization first needs to identify the optimal data layouts
for them.

B. Optimal data layout selection based on access cost
analysis

To identify the optimal data layout, we built a mathemat-
ical model of data access cost with consideration of all the
critical parameters in the computing environment. The cost
model is listed in Table I and the parameters it uses as input
are listed in Table II. More details about constructing the
cost model can be found in our previous research [8].

The Layout-Aware replication placement works as fol-
lows. Given a request and its associated runtime information,
the cost model is able to estimate the time cost of fulfilling
this request under each of the three data layouts. Given a
data access pattern, the cost model estimates the access cost
for each request included in the pattern. Then it adds all the
requests’ costs together to get the access cost for the entire

Table I
COST MODEL FORMULAS FOR THREE DATA LAYOUT POLICIES.

Data layout Access cost

1-DV max(m, d p
n
e)∗ (e+ sv)+ d p

n
e ∗ (a+ sb)

1-DH max(p,mn)∗e+max( p
n
,m)∗sv+pa+

p
n
∗ sb

2-D max(md p
n
e, d p

g
e) ∗ e+max(m,

d p
g
e

dn
g
e ) ∗

sv + ad p
g
e+

d p
g
e

dn
g
e ∗ sb

Table II
PARAMETERS IN THE COST ANALYSIS MODEL.

Parameters Description

p Number of I/O client processes.

n Number of storage nodes.

m Number of processes on one I/O client node.

s Data size of one access.

e Cost of single network connection establishing.

v Network transmission rate.

a Startup time of one disk I/O operation.

b Cost of reading/writing one unit of data.

g Number of storage groups in 2-D layout.

pattern. Also, for each data layout, the model generates
a cost result. Naturally, the data layout that produces the
lowest cost is the optimal selection, and the scheme will
adopt this optimal layout in the parallel file system for the
corresponding replication.

Some brief guidelines can be derived from the model. 1)
When the number of processes p is much smaller than the
number of storage nodes n, the cost of 1-DH layout policy
is the lowest among all three policies. 2) When p ≈ n, 2-
D layout policy produces higher bandwidth than the other
two. 3) When p > n, 1-DV layout policy would be the best
choice.

IV. THE RUNTIME SYSTEM AND ITS IMPLEMENTATION

Figure 4 shows the system design of the PDLA replication
scheme, which consists three phases in chronicle order. In
the first phase, during the application’s execution, the pattern
recognition module identifies and saves the data access
patterns. In the second phase, the system creates replications
directly according to the recognized data access patterns.
Compared with the original data files, the replication files
represent the data in the order of the data are accessed. In the
third phase, the system automatically forwards I/O requests
in the later runs of the same application to the replication
files for better performance.

We implement a prototype of the PDLA replication
scheme and its runtime system under MPICH2 [13] and
PVFS2 [14]. The implementation adds some components
into the default parallel I/O system, as illustrated in Figure



ApplicationApplication

P0 P1

Access F0 Access F0

Fullfill

P0's request

with F0

Fullfill

P1's request

with F0

Trace

collector

Generate

trace files

Trace 

analyzer

Patterns &

metadata

Data replicator

Retrieve

Patterns

Original File F0

P0 P1

Access F0 Access F0

I/O redirection module

Replication 0

Fullfill

P0's request

with Rep0

Fullfill

P1's request

with Rep1

Generate

pattern-direct

replications

&

Store them with

layout awareness

MPI-IO

Replication

metadata

Phase 1:

Data Access Pattern Discovery

Phase 2

Creation of Pattern-direct and 

layout-aware replication. 

Phase 3

Requests are redirected to PDLA 

replications for better performance.

Trace files

Pattern

database

Replication

catalog

1 5 7 12 16 20 16 12 201 7 5

Replication 1

Application

MPI-IO

(MPICH2)

Storage

(PVFS2)

Replications of F0

Figure 5. The architecture of the PDLA data replication scheme.

Application’s

execution

Access

patterns

Original

files

Data

replications

Application’s

later 

execution

Figure 4. System design overview.

5. Implementation details of each component are explained
hereinafter.

A. Trace collector

The trace collector simply traces MPI-IO calls defined in
the MPI standard. It gathers information of all standard MPI-
IO file operations, such as file open/close, file read/write,
and seek. The MPI-IO file operations can be blocking or
non-blocking, and collective or non-collective. The trace
collector captures the I/O operation parameters by using
the Profiling MPI interface (PMPI). The Profiling MPI
interface reroutes MPI calls to user-defined instrumentations
wrapped around the actual MPI calls. The trace collector
is implemented as a library, which can be linked to any
application we want to trace. Other than this linking step,
there is no need for programmer intervention.

During execution, each process of the application linked
to the trace collection library generates one trace file that

contains all its I/O operations. For each file operation, the
trace collector gathers the following information: 1) MPI
rank and process ID; 2) a unique file ID; 3) file offset
and request size; 4) name of the I/O operations, such as
MPI File read at; 5) the starting time of the operation;
and 6) the operation’s ending time. The trace collector also
records the mapping between the unique file ID and the file
path.

B. Trace analyzer

Trace analyzer performs offline trace analysis and utilizes
the “template matching” approach to recognize data access
patterns from trace files. To some extent, one trace file is
a list of file operation records, and each record contains
an operation’s data access information. The analyzer uses
a cursor to mark its analysis progress in the trace. It starts
from the first record and moves the cursor forward to scan all
records until reaching the end. During scanning, the analyzer
always picks a predefined access pattern as a template, to
check whether it matches the records around the cursor.
Once a match is found, the cursor moves forward along
with the same pattern in the trace, until the match does
not hold. If there is no match for the first template, the
analyzer switches to other templates and tries again. If the
analyzer fails to find a match for all templates, it skips the
current record, moves the cursor forward, and starts over
the matching at the new position. The analyzer produces all
the local patterns by analyzing each trace file. After that,
it examines all the local patterns and combines the relative



ones into global patterns. Trace analyzer inserts obtained
patterns into Pattern Database.

C. Pattern database

Both the data replicator and the request redirection module
in MPI-IO need to retrieve an application’s data access
patterns. We keep these metadata in “Pattern Database”.
It saves the mapping relation between applications and
their data access patterns, including: 1) which application
a pattern belongs to; 2) which file a pattern depends on; 3)
the rank of a process that a pattern belongs to; and 4) which
local access pattern is included in a global access pattern.
Pattern Database also saves the metadata on the runtime
environment of the owner application, including mainly the
parameters of the system that will be used to determine the
optimal data layout for the generated replication files.

We use Berkeley DB to implement the pattern database.
The Berkeley DB is configured as a hash table, and each
record is a key-value pair. We generate “patternID” by
encoding the following information together: application’s
execution command, number of process, rank of the process,
and the original file name. Each record in the Berkeley DB
hash table is a key-value pair; the key is the patternID
and the value contains the data access pattern and the
runtime information. The value’s presentation in the code is
a structure definition (in C language) that includes several
fixed member variables and a union (also in C language) of
various type of data access patterns.

D. Data replicator

The data replicator is a lightweight daemon program that
runs in the background. It monitors a queue that contains
all the data access patterns that need to be replicated on.
When the trace analyzer inserts a new access pattern in to
the pattern database it also en-queues the same pattern into
this global queue.

When the queue is not empty, the replicator de-queues
data access patterns and starts to make replications according
to them, one at a time. In the meantime, the data replicator
uses the runtime information and the cost-based data layout
model to find the optimal data layout configuration. Then it
just reads data from the original file and writes them into
the replication file placed in the PFS with the optimal data
layout. We implement such a queue using Berkeley DB’s
built-in queue access mode. To configure the data layout
the data replicator just sets up a directory with the optimal
data layout configuration in PVFS2, and then stores the
replication into that directory. PVFS2 provides a tool pvfs2-
xattr for configuring a directory’s data layout policy.

The data replicator also works as the replication scanner.
It periodically scans the pattern database, and whenever it
finds that a pattern’s original file is missing, it removes the
corresponding data replication and related metadata.

E. Replication catalog

The replication catalog is used to store metadata for
replications. It manages metadata about the relationships
among data replications, original files, and the data access
patterns, including: 1) which original file a replication’s
data comes from, and 2) based on which access pattern a
replication is created. Its implementation also uses Berkeley
DB configured as a hash table; the key is the patternID (the
same key in Pattern Database) and the value is the path to
the replication file based on the corresponding data access
pattern.

F. I/O redirection module in MPI-IO

I/O redirection module redirects data accesses on the
original files to the replications. Usually an application
issues a data request with three parameters: the identifier
of the original file, the data offset, and the request size.
After locating the replication file according to these three
I/O parameters, runtime information, and the metadata in
replication catalog, the redirection module translates the
filename and offset between original file and the replication
and fulfills the request using the replication.

We have made the following modifications to MPI-IO
standard functions to implement the translation.

MPI File open: While opening a file, instead of opening
the original file, the method tries to open the corresponding
replication file.

MPI File read/MPI File write (and other formats of
read/write, such as MPI File read at, etc.): For each I/O
read or write, this method uses the file handle of the
replication file and checks whether the access pattern has
changed or whether the opened file contains the requested
content. If the application is still following the same pattern,
the module calculates the correct data offset, and issues the
data request using the new offset and the input file handle.
If the pattern has changed, the module finds new patterns,
opens new replication files, and issues request to them.

MPI File close: It closes the opened replication file.
MPI File seek: It calculates the offset and conducts the

seek operation in the replication if necessary.
When the requested data do not belong to any data access

pattern and do not have replications, this system will act as
the same as the default MPI-IO implementation.

V. EVALUATION

The experiments were conducted on a 65-node Sun
Fire Linux based cluster, including one head node and 64
computing nodes. The head node was Sun Fire X4240,
equipped with dual 2.7 GHz Opteron quad-core processors,
8GB memory, and 12 500GB 7200RPM SATA-II drives
configured as RAID5 disk array. Each computing node
has two Opteron quad-core processors, 8GB memory and
a 250GB 7200RPM SATA-II disk (HDD). We employ 8
nodes as storage nodes managed by PVFS2 and all the



 0

 50

 100

 150

 200

 250

 300

 8  64  512

A
g

g
re

g
a

te
d

 B
a

n
d

w
id

th
 (

M
B

/s
)

Number of processes

IOR with different numbers of processes

Original
PD only

Figure 6. IOR performance improvements with various numbers of
processes after enabling PD replication scheme.

 0

 50

 100

 150

 200

 250

 300

16KB 256KB 4MB

A
g

g
re

g
a

te
d

 B
a

n
d

w
id

th
 (

M
B

/s
)

Request sizes

IOR with different request sizes

Original
PD only

Figure 7. IOR performance improvements with various request sizes after
enabling PD replication scheme.

other nodes work as client nodes. The head node is used for
management, and there was no overlap between file servers
and I/O client nodes, so that all the data accesses between
the application and the file system are remote accesses.

A. In-depth evaluation with IOR benchmark

1) Evaluation on Pattern-Direct replication scheme: ac-
cessing replications versus accessing original data: The
evaluation in this subsection is to show the effectiveness of
the Pattern-Direct data replication scheme in improving I/O
performance. To ensure that the improvements only come
from applying the Pattern-Direct replication, for our testing,
we disabled the Layout-Aware placement in these tests.
Therefore, the replication and original files are using the
same data layout. The layout is 1-DH data layout (simple-
stripe distribution in PVFS2) with stripe size of 64KB.

First we vary the number of processes. We run IOR
benchmark with 8, 64, and 512 processes. Each process
accesses 100MB of data in a fixed-stride data access pattern,
and the request size is 256KB. Different processes access
different regions of the original file so that no process’s
data co-locate with any other’s data. Figure 6 shows the
results of this test. We can see that, the overall bandwidth is

 240

 250

 260

 270

 280

 290

 300

 310

 320

 8  64  512

A
g

g
re

g
a

te
d

 B
a

n
d

w
id

th
 (

M
B

/s
)

Number of processes

IOR with different numbers of processes

PD only
PD + LA

Figure 8. IOR performance improvements with various numbers of
processes after further enabling LA replication placement.

improved by 67% to 935%. With the number of processes
getting larger, IOR’s bandwidth gets lower because each
storage node needs to serve more processes’ request and
the competition among processes gets more severe. Figure 6
also shows another improvement brought by PD replication:
when the process number increase, the rate of bandwidth
degrading is much lower with PD than that with the original
case. In other words, the I/O system’s scalability on serving
more concurrent requests has been significantly improved.

We also vary the request size of IOR. We run IOR with
request size of 16KB, 256KB, and 4MB. The number of
processes is fixed to 64. Figure 7 shows the results of
this test. Similar to the previous test, the bandwidth is
improved by 80% to 926%. With the request size getting
smaller, IOR’s bandwidth gets lower because each storage
node needs to handle larger number of small non-contiguous
data requests thus the disk seekings get more frequent.
Figure 7 also reveals another improvement by applying PD
replication: when the request size decreases, the rate of
bandwidth degrading is much lower with PD than that with
the original case. In other words, the I/O system’s ability to
handle large number of small requests has been significantly
improved.

2) Evaluation on Layout-Aware replication placement:
storing replications with layout awareness versus without:
We conduct experiments to show that the data layout can
further improve performance, which verifies the need to
optimize data layouts of replications. We store the repli-
cations in two different ways, one set of them are stored in
PVFS2’s default data layout, and the other set of replications
are stored in the optimal data layout calculated by data
replication using the cost model presented in Section III-B.
These two sets of replications are identical with each other,
so all the performance differences are the result from the
differences of their data layouts.

In this test, we use IOR benchmark with the data access
pattern of fixed-stride data access pattern. We vary the
number of processes. We run IOR benchmark with 8, 64,



 282

 284

 286

 288

 290

 292

 294

 296

 298

 300

16KB 256KB 4MB

A
g

g
re

g
a

te
d

 B
a

n
d

w
id

th
 (

M
B

/s
)

Request sizes

IOR with different request sizes

PD only
PD + LA

Figure 9. IOR performance improvements with various request sizes after
further enabling LA replication placement.

and 512 processes. The corresponding results are shown
in Figure 8. We also vary the request size of IOR. We
run IOR with request size of 16KB, 256KB, and 4MB.
The corresponding results are shown in Figure 9. The
results shows that the LA replication placement produces
extra 0.5% to 10% performance improvements based on the
performance that is already significantly improved by PD
replication scheme. The overall performance is improved by
84% to 970% with applying both PD and LA.

B. Evaluation on overall performance improvement with
PIO-Bench and MPI-Tile-IO Benchmark

The above in-depth evaluation with IOR already demon-
strates the effectiveness of PDLA in improving I/O perfor-
mance. The overall performance improvement with IOR is
84% to 970%. To convince the IOR testing is representative,
we have extended the evaluation to PIO-Bench and MPI-
Tile-IO benchmarks.

We run PIO-Bench with a nested-stride access pattern
and MPI-Tile-IO with its default access pattern. MPI-Tile-
IO treated the entire data file as a 2-D matrix and divides it
into n×n tiles (n rows by n columns). Given n2 processes,
each process accesses the data in one tile, with fixed-stride
access pattern. The data of n tiles in the same row are nested
together. Therefore, MPI-Tile-IO’s data access pattern is also
nested-stride.

In this test, we run both benchmarks with 64 processes
and various request sizes. The request sizes are 1KB, 4KB,
16KB, 64KB, 256KB, and 1MB. The data layout for the
original data files is 1-DH with the default 64KB stripe size.
We record each program’s execution and use it to divide
the total data access size to get the aggregated bandwidth.
Figure 10 shows the performance improvements that PDLA
brings to MPI-Tile-IO. The aggregated bandwidth increases
by 36% to 115%. Figure 11 shows that, for PIO-Bench, the
I/O performance improvement is 10% to 98%.

As mentioned above, the data access patterns of both
PIO-Bench and MPI-Tile-IO are nested-stride. This means,

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

1K 4K 16K 64K 256K 1M

A
g

g
re

g
a

te
d

 B
a

n
d

w
id

th
 (

M
B

/s
)

Request size (Bytes)

MPI-Tile-IO with different request sizes

Original
PDLA

Figure 10. Overall performance improvements with MPI-Tile-IO.

 0

 50

 100

 150

 200

 250

 300

 350

1K 4K 16K 64K 256K 1M

A
g

g
re

g
a

te
d

 B
a

n
d

w
id

th
 (

M
B

/s
)

Request size (Bytes)

PIO-Bench with different request sizes

Original
PDLA

Figure 11. Overall performance improvements with PIO-Bench.

each process has a fixed-stride access pattern. But multiple
local access patterns are nested with each other and can be
combined into global access patterns. Therefore, the nested-
stride pattern yields better data locality then does the fixed-
stride data access pattern that we used for IOR’s tests. As a
result, the performance improvements of these two bench-
marks are not as large as that of IOR, but are still significant.
This further confirms the adaptability of PDLA; when the
application’s data accesses have a poorer performance (due
to the poorer data locality among consecutive accesses), it
gains more benefit from PDLA.

C. System overhead

As showed in Figure 5, we integrate some components
into the default parallel I/O system to make the PDLA
scheme works automatically. For some application with
recognized data access patterns and PDLA replication files,
the system is able to improve its overall I/O performance.
However, some applications do not have regular data access
patterns thus will not benefit from the access to the PDLA
replication files. In this case, overhead may exist, which may
degrade performance if it is noticeable in volume.

Access pattern recognition and access cost analysis are
conducted offline in the background, thus do not affect the



 0

 200

 400

 600

 800

 1000

 1200

 8  64  512

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Number of processes

System Overhead

Original
PDLA

Figure 12. System overhead test results.

execution of user applications. The trace collection only
happens once, in the first execution of an application; and
the overhead brought by this is illegible as shown in our
previous evaluation [9]. Therefore, in this section we only
evaluate the following two possible sources of overheads in
the runtime system.

1) During “file open”, the I/O redirection module needs
to look up the data access pattern in the Pattern Database.

2) During “file read/write”, the module needs to check
whether the opened file is a replication, thus to decide
whether to do the offset calculation.

The overhead is very small. To show the overhead is
negligible, we run IOR with contiguous data access pattern,
and put no related pattern in the database and make no data
replication. So the system just accesses the original files.
We run IOR with 8, 64, and 512 processes, and each of
them 100MB data with the request size of 256KB. Figure
12 shows the results. As expected, the overhead is almost
not observable.

VI. DISCUSSION ON WRITE OPTIMIZATION

At this time, we have fully studied the performance
optimization of read operations. Performance optimization
for writes is often complex due to data consistence issues.
In the meantime, due to the effect of write-buffer, optimized
write is not as effective as its read counterpart. For the sake
of page limitation, we only present the design and partial
evaluation results of write optimization mechanism of PDLA
herein.

For one write access pattern, the data replicator first check
whether there is a data dependency (data hazard) between
this pattern and others. If there is a write after read (WAR) or
write after write (WAW) data dependency, no action is taken.
If no WAR or WAW data hazard exist, the Data Replicator
uses the access pattern to create an empty replication file,
and while the application issues the write request, the request
redirection model directly calculates the data mapping with
the access pattern, and then writes the data into the empty
file. The data replicator running in the background then

 160

 180

 200

 220

 240

 260

 280

 300

 320

 340

 360

 380

 8  16  32

A
g

g
re

g
a

te
d

 B
a

n
d

w
id

th
 (

M
B

/s
)

Number of processes

IOR (Write) with different numbers of processes

Original
PDLA

Figure 13. Write performances with various numbers of processes.

 0

 50

 100

 150

 200

 250

 300

 350

16KB 256KB 4MB

A
g

g
re

g
a

te
d

 B
a

n
d

w
id

th
 (

M
B

/s
)

Request sizes

IOR (Write) with different request sizes

Original
PDLA

Figure 14. Write performances with various request sizes.

syncs all the data from the replication file back to the original
data file.

Some experiments are conducted to show that the PDLA
scheme is also able to improve the write performance. The
experiment setup is similar to the read performance tests.
The only difference is to change the I/O operation from
read to write. We also use IOR and vary both the number
of processes and the data request size.

The results are shown in Figure 13 and Figure 14. The
performance improvement is up to 3 times, which is smaller
than the improvements in the read tests. The data writes
usually will be cached by the storage node’s memory first
and then flushed back to physical devices. The original
performance already benefits from the cached writes. Thus
the performance difference between the original system and
the PDLA enabled system is not large.

In some cases, the write bandwidth is even larger than the
read bandwidth. This is also because of the cached writes. In
reads test, we flush the cache of all nodes before each tests,
thus no reads can benefit from the cache on either client side
or server side.

VII. RELATED WORK

Existing works related to this study fall into two cat-
egories: data replication and data organization. Numerous



researchers have spent much research efforts on I/O opti-
mizations with these techniques.

A. Data replication

Many servers may simultaneously access different parts
of one segment of data in an interleaving way. Interfer-
enceRemoval [17] identifies segments of files that could be
involved in this kind of interfering accesses and replicates
them to their respectively designated I/O nodes, so some I/O
requests can be re-directed to the replicas on other I/O nodes.
InterferenceRemoval reduces the degree of interference on
each node. PDLA replication scheme creates replications
based on data access patterns thus the rule of selecting data
to be replicated is straightforward. PDLA also reorganizes
data according to the access order in the pattern, so it
transforms noncontiguous accesses to contiguous ones.

There are also many I/O optimizations based on data
replications in “non-uniform data access” environments. In
these “non-uniform access” storage systems, such as HDFS
[15] and GPFS-SNC [18], accessing data from different
locations yields different costs. Multiple copies of each
data file are placed in multiple locations, and the systems
[15] [18] [19] [20] always select the “best” (closest on
location in terms of access cost) replica for accesses based
on storage and network performance predictions provided by
an information service inside a cluster or grid. Our PDLA
replication scheme focuses on using data replication with
awareness of access pattern and layout to optimized I/O
performance of a uniform access storage system, such as
PVFS2 [14] and Lustre [21].

Some modern parallel file systems, such as Ceph [22],
Lustre [21], and GPFS [23], provide built-in data replication
functionalities, but these features are mainly designed for the
purpose of enhancing the system’s fault tolerance or used
as data backup service. Similar redundant data placement
approaches [24] [25] are designed so that one or few storage
devices entering or leaving the storage system does not affect
the whole system’s data integrity and availability. Instead of
being for the purpose of improving the storage system’s fault
tolerance, the PDLA replication scheme is intended for I/O
performance optimization based on data replications, an area
that has attracted attention only recently [8].

B. Data organization

AILS [26], FS2 [27], and BORG [28] automatically reor-
ganize selected disk blocks based on the dynamic reference
stream to increase effective storage performance by reducing
the disk seek distance between requests thus reducing the
seeking overhead of each request. These techniques are
efficient for single disk and disk arrays but require complex
implementation in the disk device driver and local file
systems. With a simple implementation in I/O middleware,
PDLA replication scheme suits today’s large-scale HPC
systems well and has better pattern recognition ability.

SOGP [29] is a technique that stores a copy of data
that is often accessed in a more efficient organization to
improve read performance. It helps PVFS2 [14] use the
local storage more efficiently, which bridges the gap between
PVFS2 and local storage. PDLA focuses bridging the gap
between application and logical data and the gap between
logical and physical data to make an integrated optimization
crossing these different layers. He et al. proposed a file re-
organization method according to access pattern to increase
the contiguousness by remapping files in MPI-IO layer [30]
[31]. Compared with that, replications generated by PDLA
scheme cost less storage resource and are more flexible for
further data layout optimization. More importantly, PDLA
is a combined system approach with replication, reorgani-
zation, and optimized data layout working collectively for
best performance.

For write optimization, PLFS [32] [33] stores the writes
in a set of efficiently reorganized log-formatted files; the
write performance can be dramatically improved, but the
performance of read back on those files may not be good
due to the inevitable data restructuring. In PDLA replication
scheme, read and write access patterns are handled sepa-
rately to achieve optimal performance for both of them.

To make the data sets generated by HPC applications more
accessible to MapReduce-based data analysis applications,
MRAP [34] reorganizes the data sets according to data
access patterns, during the procedure of copying them from
HPC storage to MapReduce system’s storage. The PDLA
data replication scheme focuses on I/O optimization in
general purpose parallel file systems, such as PVFS2.

VIII. CONCLUSION

We have introduced the Pattern-Direct Layout-Aware
(PDLA) replication scheme for I/O optimization based on
application specific I/O characteristics. We have refined and
combined our previous work in data access pattern identifi-
cation and cost analysis in designing PDLA and uniquely
proposed a system solution for pattern-based replication
optimization.

PDLA consists of two key components: Pattern-Direct
(PD) replication scheme and Layout-Aware (LA) replication
placement. With the “Pattern-Direct replication scheme,”
the I/O system creates a reorganized data replication each
for each identified access pattern of the application. One
advantage of PD is that the replication will be accessed in
a contiguous way, yielding high I/O performance; another
is that it only replicates the accessed data patterns, thus
has efficient uses of storage resources. With “Layout-Aware
replication placement,” the system stores the generated repli-
cations in their optimal data layouts based on access cost
analysis.

Other contributions of this study are that a runtime system
is also designed to integrate PDLA into existing parallel I/O
path and that a prototype under the MPICH2 and PVFS2



environment is implemented to evaluate the design. The de-
sign consists of six components. They are: 1) trace collector,
2) trace analyzer, 3) pattern database, 4) data replicator, 5)
replication catalog, and 6) I/O redirection module.

Experimental results show that the PDLA replication
scheme is feasible and effective in improving I/O per-
formance. Given an application with regular data access
patterns, the scheme improves the read performance by 10%
to 970% of the original performance and improves write
performance up to 3 times. The introduced overhead is
negligible, even in the worst case where applications have
no regular access patterns.

A general assumption of data replication is that repli-
cation will lead to space and energy cost. Since PDLA
only replicates a small portion active data based on data
access pattern, the space and energy trade-off may not be a
subject of concern. In fact, with replications of hot data, the
faster access on the replications can save some energy, and
offloading cold data to slower disk may save more, in terms
of energy and space.

In the future work, we plan to continue exploring other
ways of utilizing application’s I/O characteristics to make
the storage system more intelligent and more efficient, and
to test more applications from both performance and energy
consumption point-of-view.

ACKNOWLEDGMENT

The authors are thankful to and Dr. Robert Ross and
Dr. Dries Kimpe of Argonne National Laboratory and Dr.
Huaiming Song of Dawning Information Industry for their
constructive and thoughtful suggestions toward this work.
The authors are also grateful to anonymous reviewers for
their valuable comments and suggestions. This research was
supported in part by National Science Foundation under NSF
grant CCF-0937877 and CNS-1162540, and in part by the
Office of Advanced Scientific Computing Research, Office
of Science, U.S. Department of Energy, under Contract DE-
AC02-06CH11357.

REFERENCES

[1] NASA and the California Institute of Technology,
“Montage - Image Mosaic Software for Astronomers,”
http://montage.ipac.caltech.edu.

[2] Cebit.com.au, “Square Kilometre Array (SKA) Telescope
Will Generate Big Data,” http://tinyurl.com/8wlzl9o, 9 August
2012.

[3] R. Thakur, W. Gropp, and E. Lusk, “Data Sieving and Col-
lective I/O in ROMIO,” in Proceedings of the 7th Symposium
on the Frontiers of Massively Parallel Computation, 1999.

[4] A. Ching, A. Choudhary, K. Coloma, W. Liao, R. Ross, and
W. Gropp, “Noncontiguous I/O Accesses through MPI-IO,”
in Proceedings of IEEE/ACM International Symposium on
Cluster, Cloud, and Grid Computing, 2003.

[5] A. Ching, A. Choudhary, W. Liao, R. Ross, and W. Gropp,
“Efficient Structured Data Access in Parallel File Systems,”
in Proceedings of IEEE International Conference on Cluster
Computing, 2003.

[6] K. Seamons, Y. Chen, P. Jones, J. Jozwiak, and M. Winslett,
“Server-Directed Collective I/O in Panda,” in Proceedings of
IEEE/ACM Supercomputing ’95, 1995.

[7] X. Zhang, S. Jiang, and K. Davis, “Making Resonance
a Common Case: A High-performance Implementation of
Collective I/O on Parallel File Systems,” in Proceedings of
International Parallel and Distributed Processing Symposium,
2009.

[8] H. Song, Y. Yin, Y. Chen, and X.-H. Sun, “A Cost-Intelligent
Application-Specific Data Layout Scheme for Parallel File
Systems,” in Proceedings of the 20th International Sympo-
sium on High Performance Distributed Computing, 2011.

[9] Y. Yin, S. Byna, H. Song, X.-H. Sun, and R. Thakur,
“Boosting Application-Specific Parallel I/O Optimization Us-
ing IOSIG,” in Proceedings of IEEE/ACM International Sym-
posium on Cluster, Cloud, and Grid Computing, 2012.

[10] H. Song, Y. Yin, X.-H. Sun, R. Thakur, and S. Lang, “A
Segment-Level Adaptive Data Layout Scheme for Improved
Load Balance in Parallel File Systems,” in Proceedings of
IEEE/ACM International Symposium on Cluster, Cloud, and
Grid Computing, 2011.

[11] T. Madhyastha and D. Reed, “Exploiting Global Input/Output
Access Pattern Classification,” in Proceedings of IEEE/ACM
Supercomputing ’97, 1997.

[12] S. Byna, Y. Chen, X.-H. Sun, R. Thakur, and W. Gropp,
“Parallel I/O Prefetching Using MPI File Caching and I/O
Signatures,” in Proceedings of IEEE/ACM Supercomputing
’08, 2008.

[13] Argonne National Laboratory, “MPICH2: High-Performance
and Widely Portable MPI,” http://www.mpich.org/.

[14] R. Ross, R. Thakur et al., “PVFS: A Parallel File System for
Linux Clusters,” in In Proceedings of the 4th Annual Linux
Showcase and Conference, 2000.

[15] D. Borthakur, “HDFS Architecture Guide,” Hadoop Apache
Project, 2008.

[16] H. Song, Y. Yin, X.-H. Sun, R. Thakur, and S. Lang,
“Server-Side I/O Coordination for Parallel File Systems,” in
Proceedings of IEEE/ACM Supercomputing ’11, 2011.

[17] X. Zhang and S. Jiang, “InterferenceRemoval: Removing
Interference of Disk Access for MPI Programs through Data
Replication,” in Proceedings of IEEE/ACM Supercomputing
’10, 2010.

[18] K. Gupta, R. Jain, I. Koltsidas, H. Pucha, P. Sarkar, M. Sea-
man, and D. Subhraveti, “GPFS-SNC: An Enterprise Storage
Framework for Virtual-Machine Clouds,” IBM Journal of
Research and Development, 2011.



[19] B. Allcock, J. Bester, J. Bresnahan, A. Chervenak, C. Kessel-
man, S. Meder, V. Nefedova, D. Quesnel, S. Tuecke, and
I. Foster, “Secure, Efficient Data Transport and Replica Man-
agement for High-Performance Data-Intensive Computing,”
in Proceedings of Mass Storage Conference, 2001.

[20] A. Chakrabarti and S. Sengupta, “Scalable and Distributed
Mechanisms for Integrated Scheduling and Replication in
Data Grids,” Distributed Computing and Networking, pp.
227–238, 2008.

[21] P. Braam et al., “The Lustre Storage Architecture,” 2004.

[22] S. Weil, S. Brandt, E. Miller, D. Long, and C. Maltzahn,
“Ceph: A Scalable, High-Performance Distributed File Sys-
tem,” in Proceedings of the 7th Symposium on Operating
Systems Design and Implementation, 2006.

[23] F. Schmuck and R. Haskin, “GPFS: A Shared-Disk File
System for Large Computing Clusters,” in Proceedings of the
First USENIX Conference on File and Storage Technologies,
2002.

[24] A. Brinkmann, S. Effert, C. Scheideler et al., “Dynamic and
Redundant Data Placement,” in Proceedings of International
Conference on Distributed Computing Systems, 2007.

[25] A. Brinkmann and S. Effert, “Redundant Data Placement
Strategies for Cluster Storage Environments,” Principles of
Distributed Systems, pp. 551–554, 2008.

[26] W. Hsu, A. Smith, and H. Young, “The automatic improve-
ment of locality in storage systems,” ACM Transactions on
Computer Systems (TOCS), vol. 23, no. 4, pp. 424–473, 2005.

[27] H. Huang, W. Hung, and K. Shin, “FS2: Dynamic Data Repli-
cation in Free Disk Space for Improving Disk Performance
and Energy Consumption,” ACM SIGOPS Operating Systems
Review, vol. 39, no. 5, pp. 263–276, 2005.

[28] M. Bhadkamkar, J. Guerra, L. Useche, S. Burnett, J. Lip-
tak, R. Rangaswami, and V. Hristidis, “BORG: Block-
reORGanization for Self-Optimizing Storage Systems,” in
Proccedings of the 7th USENIX Conference on File and
Storage Technologies, 2009.

[29] P. Gu, J. Wang, and R. Ross, “Bridging the Gap between
Parallel File Systems and Local File Systems: A Case Study
with PVFS,” in Processings of International Conference on
Parallel Processing, 2008.

[30] J. He, H. Song, X.-H. Sun, Y. Yin, and R. Thakur, “Pattern-
Aware File Reorganization in MPI-IO,” in Proceedings of
Parallel Data Storage Workshop, 2011.

[31] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable
Parallel Programming with the Message Passing Interface.
MIT press, 1999, vol. 1.

[32] J. Bent, G. Gibson, G. Grider, B. McClelland, P. Nowoczyn-
ski, J. Nunez, M. Polte, and M. Wingate, “PLFS: A Check-
point Filesystem for Parallel Applications,” in Proceedings of
IEEE/ACM Supercomputing ’09, 2009.

[33] M. Polte, J. Lofstead, J. Bent, G. Gibson, S. Klasky et al.,
“...And eat it too: High read performance in write-optimized
HPC I/O middleware file formats,” in Proceedings of the 4th
Annual Workshop on Petascale Data Storage, 2009.

[34] S. Sehrish, G. Mackey, J. Wang, and J. Bent, “MRAP: A
Novel MapReduce-based Framework to Support HPC Ana-
lytics Applications with Access Patterns,” in Proceedings of
the 19th ACM International Symposium on High Performance
Distributed Computing, 2010.


